скрыть меню
Разделы: Обзор

ВИЧ-инфекция и иммунная система: их взаимодействие и последействие

Е.М. Кравченко, В.Н. ИванищевГородской центр по борьбе со СПИДом, г. Киев

4_3_2009.jpg5_3_2009.jpgВИЧ-инфекция – болезнь, вызываемая ретровирусом, поражающим клетки иммунной, нервной и других систем и органов человека. Для нее характерно длительное хроническое прогрессирующее течение, завершающееся развитием СПИДа и сопровождающих его оппортунистических заболеваний [1].

История открытия
В 1981 г. Центр по контролю над заболеваниями США (CDC-Centers for Disease Control and Prevention) сообщил о редкой инфекции – пневмоцистной пневмонии у мужчин-гомосексуалистов. Другие исследователи отметили сочетание необычной инфекции с развитием опухолей, особенно саркомы Капоши [1].
В ходе иммунологических исследований этих больных установлено наличие специфического повреждения Т-лимфоцитов, преимущественно Т-хелперов (CD4). В последующем были описаны множественные оппортунистические (вирусные, грибковые, микобактериальные и протозойные) инфекции, которые обычно характерны для лиц с иммуносупрессией [1].
В 1983 г. Barre-Sinoussi в лаборатории Люка Монтаньи Института Пастера в Париже из лейкоцитов крови пациента (официанта-гомосексуалиста), у которого обнаруживалось стойкое увеличение лимфатических узлов нескольких групп, выделил человеческий Т-клеточный лимфотропный вирус (Limphadenopathy Associated Virus – LAV). B том же году Роберт Гало и его коллеги открыли Т-лимфотропный вирус ІІІ типа (HTL V 3). В последующем оказалось, что эти вирусы идентичны. Он получил название «вирус иммунодефицита человека» – ВИЧ (Human Immunodeficiency Virus – HIV) [1, 2].
Этиология
ВИЧ относится к подсемейству лентивирусов семейства ретровирусов. Известны два типа вируса: ВИЧ-1 и ВИЧ-2. С помощью электронной микроскопии показано, что оба типа вируса имеют сходную структуру. В то же время они имеют отличия – по молекулярной массе белков и некоторым дополнительным генам [4, 7, 8].

Морфология возбудителя
Характерными особенностями ретровирусов являются уникальное строение генома и наличие обратной транскриптазы (РНК-зависимая ДНК-полимераза или ревертаза). В связи с наличием фермента семейство и получило свое название (от англ. retro – обратно).
Полная вирусная частица имеет сферическую форму диаметром 100-120 нм [1, 2]. Вирион состоит из сердцевины (нуклеокапсид), окруженной наружной мембраной (суперкапсид), и матрикса (основное содержимое). Ядро включает геном, внутренние белки р7 и р9 и ферменты – обратную транскриптазу и эндонуклеазу.
Нуклеокапсид имеет цилиндрическую или коническую форму и образован белками р18 и р24. Геном образуют две нити РНК, связанные белками р6 и р7. Белок р17 создает прослойку (матрикс) между ядром и внешней оболочкой [1-3].
Наружная мембрана, или суперкапсид, состоит из двухслойной липидной оболочки, пронизанной 72 гликопротеиновыми шипами. В составе каждого шипа – 3 пары гликопротеинов gp41 и gp120. Гликопротеины gp120 локализованы в выступающей части шипа и взаимодействуют с молекулами CD4 на мембранах клеток. Гликопротеины gp41 содержатся внутри оболочки и обеспечивают ее слияние с клеточной мембраной.

Геном вируса
В составе генома находятся две одинаковые молекулы РНК. Каждая из этих молекул состоит из 9 749 нуклеотидных пар и включает девять генов. На обоих концах молекулы РНК находятся повторяющие друг друга последовательности, не кодирующие никаких белков и известные под названием длинных концевых повторов LTR (long terminal repeat) [3] (рис. 1).
Из девяти генов три являются структурными, характерными для всех ретровирусов: gag – group-specific antigens, pol – polymerasae, env – envelope; шесть – регуляторными: tat – transactivator of transcription, rev – regulator of expression of virus proteins, vif – virion infectivity factor, nef – negative regulatory factor. Также существуют vpr и vpu для ВИЧ-1, vpx для ВИЧ-2 с мало изученной функцией [1-3].
Каждый ген выполняет соответствующие функции:
•gag – кодирует структурные протеины;
•pol – вирусные энзимы: протеазу, обратную транскриптазу и интегразу;
•env – гликопротеины оболочки;
•tat – необходим для репликации почти во всех культурах клеток;
•rev – обеспечивает транспорт компонентов вируса из ядра и переключение синтеза регуляторных белков на синтез структурных;
•nef – подавляет экспрессию молекул CD4 на поверхности инфицированных клеток, а также может угнетать активацию Т-лимфоцитов;
•vpr – необходим для репликации вируса в непролиферирующих клетках, в том числе в макрофагах;
•vpu – важен для процесса отпочковывания вируса из клетки;
•vif – отвечает за способность ВИЧ к инфицированию, а также играет важную роль в репликации вируса;
•vfu – ответственен за сборку вирусных частиц [1-3, 7].

Основные механизмы взаимодействия ВИЧ и клеток-мишеней
Основные этапы взаимодействия ВИЧ и клеток-мишеней изображены на рис. 2.

Жизненный цикл ВИЧ (период от заражения клетки-мишени до образования инфекционного вирусного потомства) можно разделить на следующие этапы:
• присоединение вируса к рецепторам клетки: белок gp120 ВИЧ взаимодействует с CD4-рецептором и CCR5/CXCR4-корецептором;
• изменение конформации поверхностных белков ВИЧ и слияние мембран;
• «раздевание вируса»: вирусная РНК освобождается от белков капсида и нуклеокапсида;
• обратная транскрипция вирусной РНК с участием фермента ВИЧ-обратной транскриптазы: образуется двуцепочная ДНК – копия вирусного генома;
• миграция (транслокация) ДНК в ядро клетки;
• интеграция ДНК в хромосомную ДНК клетки с участием фермента ВИЧ-интегразы; интегрированная ДНК получает название провирусной ДНК;
• транскрипция провирусной ДНК с участием клеточного фермента РНК-полимеразы;
• транспорт мРНК ВИЧ из ядра в цитоплазму;
• синтез вирусных белков с участием клеточных ферментов;
• транспорт вирусных белков к месту сборки, упаковка и сборка новых вирионов;
• отпочковывание и созревание вирусных частиц с участием фермента ВИЧ-протеазы [3].

Клетки-мишени
ВИЧ обладает тропностью к определенным типам клеток, что обусловлено наличием на поверхности клеток-мишеней рецептора для данного вируса. Рецепторную функцию могут выполнять различные структуры (лиганды), углеводные компоненты белков и липидов [5].
Рецепторы, независимо от биохимического строения, имеют общую структурную характеристику: состоят из трех участков, название которых обусловлено их локализацией:
•внеклеточного;
• внутримембранного;
•погруженного в цитоплазму [5].
В 1984 г. стало известно, что молекула CD4 является главным и необходимым рецептором для ВИЧ-1 и ВИЧ-2 [1, 7].
CD4 – это гликопротеид, по своему строению имеющий гомологии с определенными участками иммуноглобулинов. Аналогичные гомологии имеет и белок вируса gp120, что и определяет его тропность [2, 3, 5].
Рецепторы CD4 на своей поверхности содержат следующие клетки: CD4+-лимфоциты, CD8+-лимфоциты, дендритные клетки, моноциты, эозинофилы, мегакариоциты, нейроны, микроглии, сперматозоиды [3, 5].

Хемокины и их роль в патогенезе ВИЧ-инфекции
Наружная клеточная мембрана может иметь несколько рецепторов для различных типов вируса, но именно конкретный вирус взаимодействует с определенным рецептором [5].
Опытным путем установлено, что одних CD4-рецепторов для проникновения вируса в клетку недостаточно. Был сделан вывод о существовании дополнительных рецепторов – корецепторов [3, 7].

В 1996 г. были опубликованы данные, согласно которым люди, не имеющие рецептора CCR 5 на моноцитах, могут быть невосприимчивыми к ВИЧ-инфекции, так как именно этот рецептор совместно с CD4 определяет способность ВИЧ прикрепляться к клеткам человека, а затем проникать в них с последующим их разрушением и развитием синдрома иммунодефицита [5].

Рецептор ССR 5 является природным лигандом хемокина [3].
Хемокины – это низкомолекулярные молекулы, которые продуцируются в основном клетками воспаления (лимфоциты, макрофаги, гранулоциты и эозинофилы) в ответ на стимуляцию антигенами, митогенами и другими активаторами. Они обеспечивают направленное движение клеток, имеющих хемокиновые рецепторы. Этот феномен называется хемоаттракцией [1, 3].
С биологической точки зрения, хемокины представляют собой белки, имеющие в составе 68-120 аминокислот. В зависимости от порядка цистеновых последовательностей хемокины делятся на С-Х-С (α-хемокины), С-С (β-хемокины) и С-хемокины. Хемокины гомологичны по структуре между собой и могут связываться с одними и теми же рецепторами [7].
В табл. 1. приведены рецепторы, их лиганды и клетки, несущие рецепторы (по C.R. Machery, с изменениями) [1].
Хемокиновый рецептор CXCR 4 обеспечивает проникновение ВИЧ, тропного к Т-клеткам, CCR 2 – к макрофагам, CCR 3 – к эозинофилам, CCR 5 – к Т-хелперам 1 типа. Эотаксин прерывает связь вируса с рецептором CCR 3, что указывает на более важную роль последнего в патогенезе ВИЧ-инфекции. Природные лиганды (MIP-1 (б, в) и RANTES блокируют макрофаготропную ВИЧ-инфекцию, но не инфекцию, вызванную вирусами, тропными к Т-клеткам [1].

In vitro более десятка рецепторов, связывающих различные хемокины, оказались способными распознавать ВИЧ-1, однако в природных условиях эту роль играют только два из них – CCR 5 и CXCR 4. В этой связи важно отметить, что генетический дефект, связанный с отсутствием CCR 5, почти полностью исключает возможность заражения ВИЧ-1 [3].


Иммунопатогенез
Дендритные клетки, макрофаги, В-лимфоциты – основные антигенпрезентирующие клетки иммунной системы. Клетки Лангерганса (специализированные клетки кожи и слизистых оболочек) одними из первых сталкиваются с ВИЧ в слизистых оболочках и, согласно своему предназначению, захватывают, перерабатывают и переносят его на свою поверхность. После этого они мигрируют в лимфоидную ткань, где представляют антиген Т-лимфоцитам, в результате чего происходит активация последних [6, 7].
Оболочечный белок gp120 ВИЧ-1 связывается с CD4, а также хемокиновыми рецепторами, и начинается сложный биологический процесс взаимодействия вируса с клеткой, заканчивающийся синтезом нового поколения вирионов [1].
Процесс проникновения вируса проходит три стадии:
•присоединение (распознавание и связывание с рецепторами);
•изменение конформации интегральных белков;
•собственно слияние мембран.
Вирус и клетка-мишень сближаются в пространстве, после чего вирус распознает специфические для него рецепторы. Обязательным условием является наличие двух рецепторов, причем они должны быть расположены достаточно близко друг к другу.
CD4-связывающий участок оболочечного белка gp120 соединяется с CD4-рецептором клетки-мишени. Этот шаг незамедлительно приводит к конформационным изменениям, а отдельные участки белков меняют свое расположение относительно друг друга. В результате открывается и становится доступным для взаимодействия второй участок gp120, предназначенный для связывания с корецептором CCR 5.
На следующем этапе происходит взаимодействие CCR 5 с CCR 5-связывающим участком gp120. После завершения этого процесса начинаются конформационные изменения gp41 [3]. Внемембранная часть gp41 включает две α-спирали: HR 1 и HR 2, которые поочередно начинают «закручиваться». В результате молекула gp41 сильно укорачивается, сближая вирусную и клеточную мембраны. Конформационные изменения сопровождаются высвобождением энергии, которая инициирует смешивание липидных слоев. В процессе слияния участвуют 4-6 молекул CCR 5, много молекул CD4 и 3-6 Env-тримеров.
После слияния вирусная мембрана утрачивает белки gp41 и gp120. РНК вируса в окружении нуклеокапсидных и капсидных белков попадает в клетку, и вирион «приступает» к процессу «раздевания». В результате ослабления межмолекулярных связей оболочки вируса разрушаются. Под действием фермента МАР-киназы происходит фосфорилирование матриксного белка.
После «раздевания» содержимое капсида, и прежде всего РНК, поступает в цитоплазму клетки, и начинается обратная транскрипция вирусной РНК с участием фермента обратной транскриптазы.
В цитоплазме информация с вирусной РНК посредством обратной транскриптазы (ревертазы) переписывается на ДНК. Вначале образуется однонитевая структура. Образование второй нити ДНК обеспечивает та же обратная транскриптаза. В инфицированных клетках обнаруживают три вида провирусной ДНК: линейную и две кольцевые, имеющие на своих концах один или два LTR.
Провирусная ДНК, сформированная в цитоплазме, транспортируется в ядро клетки в составе нуклеопротеинового комплекса. Ядерная ДНК защищена двуслойной мембраной. Она является барьером для большинства ретровирусов. Во время митоза мембрана растворяется, и ядро становится доступным для внедрения вирусного генетического материала.

Отличием ВИЧ-1 является его способность транспортировать свою ДНК через интактную ядерную мембрану. Это позволяет вирусу заражать неделящиеся клетки – макрофаги и микроглиальные клетки.

На следующем этапе провирусная ДНК встраивается в хромосомный аппарат клетки. Фермент интеграза на трех концах молекулы провируса удаляет по два нуклеотида, а также надрезает хромосомную ДНК. Клеточные ферменты репарации ДНК «убирают» лишние нуклеотиды на пяти концах провируса, достраивают «пробел» и с помощью интегразы сшивают концы провирусной и хромосомной ДНК. После встраивания провирусная ДНК служит матрицей для транскрипции.
Транскрипция включает три основные фазы:
•инициацию (опознание участка начала синтеза мРНК);
•элонгацию (удлинение цепи мРНК путем присоединения нуклеотидов);
•терминацию (остановка синтеза мРНК).
Фермент РНК-полимераза, используя провирусную ДНК в качестве матрицы, синтезирует матричную вирусную РНК (РНК-копия). Вновь образованная мРНК ВИЧ-1 транспортируется из ядра в цитоплазму. Перед этим она должна пройти в ядре процесс созревания, или процессинга.
Последовательности ДНК (а значит, и ее РНК-копии) не равнозначны по своей кодирующей способности: среди них выделяют значащие фрагменты (экзоны) и промежуточные (интроны). Во время созревания мРНК интроны «вырезаются» специальными ядерными ферментами, остаются в ядре и там разрушаются, а экзоны «сшиваются». Этот процесс называется «сплайсинг». Окончательное формирование мРНК происходит после присоединения последовательности из аденозинтрифосфатов.
Созревшая мРНК экспортируется в цитоплазму клетки, где выполняет две функции: служит матрицей для трансляции (синтеза белков) и встраивается в новые вирусные частицы  в качестве геномной РНК.
Вирусные белки в процессе трансляции синтезируются точно так же, как и клеточные белки.
Сборка новых вирусных частиц происходит вблизи плазматической мембраны, после этого они отпочковываются от клеточной поверхности [3].
После ознакомления с механизмами взаимодействия вируса с клетками человеческого организма возникает вопрос: «Что в дальнейшем происходит с ВИЧ-инфицированной клеткой? По какому пути развиваются взаимоотношения клетки и вируса?»
В- и Т-лимфоциты – главные эффекторные клетки антиген-специфического иммунного ответа. Их функция зависит от дендритных клеток. Распознавание антигена Т-лимфоцитами возможно только после предварительной переработки и представления пептидных фрагментов антигена дендритными клетками. С этого момента запускается каскад иммунопатологических реакций, характеризующихся нарушением работы иммунной системы, который сопровождается развитием клинических симптомов [6, 7].
Вирусная инфекция оказывает хроническое возбуждающее и стимулирующее действие на иммунную систему [3].

Поражения иммунной системы носят количественный и качественный характер: количественные заключаются в изменении численности клеток, качественные – в нарушении функции клеточных субпопуляций.


Механизмы уменьшения количества Т-лимфоцитов
Из вышесказанного становится понятно, что ключевым фактором в патогенезе ВИЧ-инфекции является уменьшение популяции CD4+-лимфоцитов [2, 3].
Исчезновение лимфоцитов CD4 из кровотока имеет сложный механизм и предусматривает гибель клеток, недостаточную выработку новых и перераспределение имеющихся лимфоцитов в лимфоидные ткани [6-8].

Механизмы уничтожения, которые можно связать
с инфицированными CD4+ Т-клетками, называют прямыми, а способы уничтожения неинфицированных Т-хелперов объединяют понятием «непрямые механизмы».

Только 1% Т-клеток погибает, будучи инфицированными ВИЧ-1, остальные 99% – по другим причинам. Одной из причин внутреннего свойства можно назвать повреждение мембраны клетки, происходящее при почковании вирусных частиц.
По мере размножения вируса в цитоплазме происходит накопление вирусных белков и нуклеиновых кислот. Вновь образованный вирус живет за счет клетки и использует для собственного развития все ее ресурсы. Итогом этого становится ускоренное истощение запасов питательных веществ и энергоресурсов клетки [3].
Взаимодействие gp120 ВИЧ-1 с мембраной CD4+-лимфоцитов приводит к программированной клеточной гибели – апоптозу зрелых CD4+-лимфоцитов или CD34+-гемопоэтических клеток-предшественников даже без инфицирования их вирусом [2, 4].
Клетки Т-sup, ЕK-клетки лизируют инфицированные CD4+-лимфоциты, а вместе с ними и вирус; этот прямой путь называют еще цитотоксическим [3].
ВИЧ-инфицированные клетки в результате слияния мембран образуют группы (количество клеток в них доходит до 500), получившие название синцития. На поверхности клеток определяется молекула белка Env, который имеет сродство к СD4-рецептору и формирует «мостики» между соседними лимфоцитами. За сближением клеток следует их слияние. Клетки, попадающие в такую сеть, становятся легкодоступными для вируса, а также теряют свою функциональную активность и могут уничтожаться организмом [2, 3].

Время полужизни ВИЧ-1 – время, которое требуется 50% вирионов, чтобы проникнуть в клетки, размножиться и заразить новую мишень, – по оценкам разных исследователей, составляет от получаса до 1-2 дней. Это означает, что в организме инфицированного человека ежедневно образуются от 2 000 до 20 000 млн новых вирусных частиц [3].

Более 99% этих вирусных частиц продуцируют CD4+-лимфоциты (около 2,6х109 клеток ежедневно), остальная часть приходится на долю макрофагов. Инфицированные Т-клетки живут не более 3 дней, а значит, миллиарды новых CD4+-лимфоцитов должны восполнять нехватку приблизительно с такой же скоростью. Около 2% этих клеток попадает в кровь, а остальные населяют собой лимфоузлы и другие ткани. Это происходит в течение длительного времени, пока иммунная система в состоянии поддерживать относительное равновесие между разрушением и синтезом инфицированных клеток (продолжительность составляет в среднем 11 лет). При естественном течении ВИЧ-инфекции количество лимфоцитов CD4 постепенно снижается, в то время как концентрация ВИЧ в крови постепенно увеличивается. На определенном этапе иммунная система уже не в состоянии самостоятельно восполнять свои клетки, что приводит к размножению вируса и развитию иммунодефицита [2, 3].
Количественные изменения в работе клеточного звена иммунитета неизбежно сопровождаются нарушениями качественного характера – снижением функциональной активности Т-лимфоцитов.

Клеточный иммунный ответ
В зависимости от секретируемых цитокинов Т-хелперы делятся на два типа. Т-хелперы 1 типа вырабатывают в основном интерлейкин 2 (ИЛ-2) и интерферон-α. Эти цитокины поддерживают эффекторные функции иммунной системы (цитотоксических Т-лимфоцитов, ЕK-лимфоцитов, макрофагов). Т-хелперы 2 типа вырабатывают преимущественно ИЛ-4, ИЛ-5, ИЛ-6 и ИЛ-10, которые активируют гуморальный ответ [7]. Т-лимфоциты утрачивают способность продуцировать Т-клеточный ростовой фактор – ИЛ-2. Вследствие этого нарушается дифференцировка Т-клеток в различные функциональные субпопуляции – СD4 и CD8, а также активность ЕК-клеток [1].
ИЛ-6 играет главную роль в терминальной В-клеточной дифференцировке в иммуноглобулинсекретирующие клетки. Оболочечный белок вируса действует напрямую на CD4 клоны Т-клеток, индуцируя синтез ИЛ-6 и увеличивая его продукцию [1, 3].
Уменьшение субпопуляции Т-хелперов 1 типа сопровождается снижением выработки α- и γ-интерферона. В свою очередь, функциональная активность ЕK-лимфоцитов находится под непосредственным влиянием таких цитокинов, как ИЛ-2 и интерферон-γ [1].
В процессе развития ВИЧ-инфекции не только поражаются лимфоциты с CD4+-фенотипом, но и нарушается функция лимфоцитов с CD8-фенотипом, то есть Т-супрессоров. Белок вируса р15 оказывает супрессивное действие на продукцию Т-клетками ИЛ-2 и γ-интерферона.
С ИЛ-2 и другими цитокинами тесно связана функция цитотоксических Т-лимфоцитов, ответственных за противовирусную и противоопухолевую защиту организма [4].

Гуморальный иммунный ответ
Роль гуморального ответа в течение ВИЧ-инфекции мало изучена. ВИЧ влияет на функциональную активность В-лимфоцитов, увеличивая синтез иммуноглобулинов и особенно продукцию IgG. Большинство антител, несмотря на присутствие вируса, являются неспецифическими (лишь около 5% от всех иммуноглобулинов – специфические) и их вырабатывается значительно больше, чем нормальными В-клетками. Такая гиперпродукция иммуноглобулинов нарастает в процессе развития инфекции [1, 6, 7].

Моноциты и макрофаги
Тканевые макрофаги у ВИЧ-инфицированных часто содержат вирус, и поскольку они не погибают от его действия, они могут выступать источником данного вируса в организме. У макрофагов снижается хемотаксис, продукция активных форм кислорода, антибактериальная токсичность [1, 6, 7].
Таким образом, поражение иммунной системы при ВИЧ-инфекции носит системный характер, проявляясь глубокой супрессией Т- и В-звеньев клеточного иммунитета. В процессе развития ВИЧ-инфекции происходят закономерные изменения гуморального иммунитета, факторов неспецифической защиты, функциональной активности лимфоцитов и моноцитов/макрофагов. Повышается уровень сывороточных иммуноглобулинов, циркулирующих иммунных комплексов. Наряду с дефицитом CD4+-лимфоцитов в динамике заболевания нарастает функциональная недостаточность СD8+-лимфоцитов, ЕK-клеток, нейтрофилов. Нарушение иммунного статуса клинически проявляется инфекционным, аллергическим, аутоиммунным и лимфопролиферативным синдромом иммунологической недостаточности – синдромом, свойственным болезни иммунных комплексов. Все это определяет клинику ВИЧ-инфекции [4].
В табл. 2 продемонстрирована зависимость развития инфекционных заболеваний от уровня CD4+-лимфоцитов.
Мы описали механизмы взаимодействия ВИЧ с клетками человеческого организма. Следствием влияния вируса является нарастающее угнетение функции иммунной системы с последующим развитием оппортунистических инфекций (вирусной, бактериальной, грибковой, протозойной этиологии).
Литература
1. Рахманова А.Г., Виноградова Е.Н., Воронин Е.Е., Яковлев А.А. ВИЧ-инфекция. – СПб., 2004. – 696 с.
2. Покровский В.В., Ермак Т.Н., Беляева В.В., Юрин О.Г. ВИЧ-инфекция: клиника, диагностика и лечение. – М.: Медицина, 2000. – 496 с.
3. Бобкова М.Р. Иммунитет и ВИЧ-инфекция. – М.: Олимпия Пресс, 2006. – 240 с.
4. Чеснокова Н.П., Михайлов А.В. и др. Инфекционный процесс. – М.: Академия естествознания, 2006. – 280 с.
5. Шувалова Е.П. Инфекционные болезни. – М.: Медицина, 2001. – 324 с.
6. Lederman M., Rodriguez B., Sieg S. HIV Insite Knowledge Base Chapter. Immunopathogenesis of HIV Infection. – San Francisco, 2004.
7. Хофман Ч., Кампс Б., Рокштро Ю. Лечение ВИЧ-инфекции. – Инфосеть «Здоровье Евразии», 2005. – 565 с.
8. Антоняк С.М., Щербинська А.М. Клінічний протокол антиретровірусної терапії ВІЛ-інфекції у дорослих і підлітків. – «Міжнародний альянс з ВІЛ/СНІД в Україні», 2004. – 112 с.

Наш журнал
в соцсетях:

Выпуски за 2009 Год

Содержание выпуска 10 (29), 2009

  1. О.В. Гуцало, П.Л. Шупика, Л.В. Громашевського

Содержание выпуска 9 (28), 2009

Содержание выпуска 3, 2009

Содержание выпуска 1, 2009

  1. Г.М. Бондаренко

Выпуски текущего года

Содержание выпуска 3-4 (124-125), 2020

  1. Д.В. Мальцев

  2. Б.М. Пухлик

  3. В. Зайков, П. В. Гришило, А. П. Гришило

  4. A. G. Corsico, S. Leonardi, . A. Licari et al.

  5. О. С. Бильченко, Т. С. Оспанова, В. А. Савоськина, Е. А. Красовская, О. В. Веремеенко

  6. M. Levin, I.J. Ansotegui, . J. Bernstein et al.

  7. A. Bedard, X. Basagana, . J.M. Anto et al.

  8. Г. Є. Ананьїна, І. П. Висеканцев, О. С. Онасенко, Л. В. Степанюк, В. Л. Пономарьова

Содержание выпуска 2 (123), 2020

  1. И. П. Кайдашев

  2. С.В. Зайков, П. В. Гришило, А. П. Гришило

  3. К. Ю. Гашинова

  4. С.О. Зубченко, С.Д. Юр’єв, С.Д. Юр’єв

  5. С.Д. Юр’єв

  6. А.Є. Богомолов

  7. Jean Bousqueta, Holger J. Schunemann, Akdis Togias et al.

Содержание выпуска 1 (122), 2020

  1. О. А. Ошлянська, Т. Г. Надточій, М. Ф. Денисова, Л. І. Омельченко, Л. Ф. Слєпова, Н.М. Музика, А. Г. Арцимович

  2. Ю.В. Шукліна

  3. Yu Chen, Qianyun Liu, Deyin Guo

  4. Carlo Caffarelli, Francesco Paravati, Maya El Hachem et al.

  5. M. Lauriello, P. Muzi, L. Di Rienzo et al.